EVALUATION OF ANTIBIOTIC RESISTANCE CASES IN ARIS DISEASE: POTENTIAL TEST AND COMPARATIVE TEST OF LEVOLOXACIN ANTIBIOTICS USED IN TASIKMALAYA CITY HEALTH CENTER

Danni Ramdhani¹* and Sri Agung Fitri Kusuma²

¹Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy.
²Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University.

ABSTRACT

Objective: Acute respiratory infection (ARIs) is an acute respiratory infection that attacks the throat, nose and lungs caused by viruses, bacteria, rickettes. Antibiotics is one way to overcome the disease ARIs. Ineffective use of antibiotics may lead to resistance. The potential value of antibiotics determines the effectiveness of an antibiotic. This study aims to determine the potential value and comparative test of levofloxacin antibiotics as a quality evaluation.

Methods: Test the antibiotic potency with diffusion method to use 3 doses. Test the antibiotic potency with diffusion method to use 3 doses with using antibiotic samples. Comparative test of antibiotic testing by comparing samples with standard against Staphylococcus aureus ATCC 29213 test bacteria.

Results: The potential value obtained was 102.3%, and comparative test was 1: 2.69.

Conclusion: The results of testing the potential of this antibiotic in accordance with the requirements contained in the USP is 90 -110%. The comparative test results show that antibiotic samples used had good bacterial killing ability.

KEYWORDS: Levofloxacin, Potential Test, Agar Diffusion, Comparative Test.

INTRODUCTION

In Indonesia, Acute Respiratory Infection (ARIs) disease is still the main cause of morbidity and mortality, especially in infants at 28%. Prevention and control of ARI is a top priority of
development in the Tasikmalaya region in the health sector (Profile of West Java Provincial Health Office, 2003).

ARIs can be caused by bacteria, viruses and rickets such as Streptococcus genus, Staphylococcus, Pneumococcus, Hemophilus, Bordetella, and Corynebacterium. Virus causes include 9 groups Mexovirus, Adenovirus, Coronavirus, Pikornavirus, Mikoplasma, Herpesvirus, and others (Depkes RI, 2000).

Previous research has obtained the data of clinical isolates isolate from oral cavity of ISPA to some antibiotics used to treat ISPA at puskesmas of Tasikmalaya City. The resistance data is 70.25% resistant to sefadroksil; 68.03% are resistant to amoxicillin, and 43.03% are resistant to ciprofloxacin (Ramdhani et al, 2017).

In this study will be tested potential test of levofloxacin which is also an important data to determine the quality of antibiotics used in the health center of Tasikmalaya City. The requirements of antibiotic levels should be in accordance with United States Pharmacopeia.

MATERIALS AND METHODS

Test Materials
Materials tested were levofloxacin from PT. Sanbe Farma used in community health center in Tasikmalaya, West Java, Indonesia. McFarland standard No. 0.5 (Merck, USA), and physiological saline 0.9%.

Bacteria Test
Test bacteria used to test the potential of levofloxacin antibiotics is Staphylococcus aureus ATCC 29213.

Bacterial Growth Media
Bacteria growth medium used was Mueller Hinton Agar (Merck) with a concentration of 43 g/L and Mueller Hinton Broth (Oxid, Basingstoke, UK) at a concentration of 21 g/L, Mueller Hinton Agar (Merck, USA) with a concentration of 43 g/L.

Method
The antibiotic potency test was performed by agar diffusion method. Determination of antibiotic potency using 3 doses done calculation by formula:
RESULT AND DISCUSSION

Testing Potential Antibiotics

The potential test of levofloxacin antibiotics according to Pharmacopoeia Indonesia IV (1995) was used Staphylococcus aureus ATCC 29737 bacteria. The potential test used is 3 + 3 pattern in which one reference standard was used and one sample with 3 dose variations. The dose used was 20 μg / mL as a high dose, 10 μg / mL as the middle dose and 5 μg / mL as a low dose. Potential testing was done three repetitions. The average diameter obtained is as follows:

Table 1: Inhibition Diameter of Potential Test Results.

<table>
<thead>
<tr>
<th></th>
<th>Inhibition Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SdH</td>
<td>1.24</td>
</tr>
<tr>
<td>BM</td>
<td>1.20</td>
</tr>
<tr>
<td>BR</td>
<td>0.95</td>
</tr>
<tr>
<td>ST</td>
<td>1.23</td>
</tr>
<tr>
<td>SM</td>
<td>1.12</td>
</tr>
<tr>
<td>SR</td>
<td>1.05</td>
</tr>
</tbody>
</table>

SdT: High Dose Standard 20 μg / mL
SdM: Middle Dose Standard 10 μg / mL
SdL: Low Dose Standard 5 μg / mL
SpT: High Dose Samples 20 μg / mL
SpM: Middle Dose Medium 10 μg / mL
SpL: Low Dose Samples 5 μg / mL

The results of antibiotic potency testing of levofloxacin with a three-dose pattern obtained for 102.03%. These results indicate that levofloxacin antibiotics used in Tasikmalaya city health centers still meet the requirements listed in the USP at 90-110% (USP, 2014).
Antibiotic Comparison Test

The comparative test of antibiotic activity aims to compare the antibiotic activity of the sample against the standard using resistant clinical isolate bacteria. The result of this appeal value is expected to be a guide in the proper treatment for patients with respiratory infection (Hermita, 2004). Testing of levofloxacin antibiotic appeal values using sample and standard antibiotics with 4 concentration variations, ie 80 μg / mL, 60 μg / mL, 40 μg / mL, and 20 μg / mL. The inhibitory diameter obtained from the appellate value of levofloxacin antibiotic activity can be seen in Table 2.

Table 2: Inhibitory Diameter of Comparative Antibiotic Test.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Antibiotics</th>
<th>80 μg/mL</th>
<th>60 μg/mL</th>
<th>40 μg/mL</th>
<th>20 μg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Levofloxacin</td>
<td>17.34</td>
<td>15.31</td>
<td>13.34</td>
<td>9.90</td>
<td></td>
</tr>
<tr>
<td>Sample Levofloxacin</td>
<td>17.21</td>
<td>15.49</td>
<td>12.11</td>
<td>10.33</td>
<td></td>
</tr>
</tbody>
</table>

Determination of antibiotic comparison test value was done by making a curve between log concentration and inhibitory diameter and then obtained by linear regression equation. After the calculation, the result of the equation for the standard is $y = 12.10x - 5.9516$ with $R^2 = 0.9949$, while the result of the equation for the sample is $y = 11.5x - 4.844$ with the value $R^2 = 0.9971$. The curve between the concentration log and the inhibitory diameter for the standard and the sample can be seen in Figure 1 and 2.

![Figure 1: Log concentration curve against standard inhibitory diameter.](image-url)
The concentration log of the standard antibiotic concentration is substituted as the value of x in the standard equation, so that the value of the inhibitory zone diameter or y value is obtained. Then, the value of y is inserted into the sample equation, so that the value of x is obtained. The antilog value of x is the value of the antibiotic concentration of the sample which is equivalent to the reference standard concentration with the same inhibitory zone diameter. Subsequently, a graph of antibiotic appellate sample values with standard antibiotics was prepared. The graph of the sample and standard antibiotic appellate values can be seen in Figure 3.

Figure 2: Log concentration curve against sample inhibitory diameter.

Figure 3: Comparative test values of antibiotic samples and standards.
The test results obtained comparison between the standard with the sample was 1: 2.69. This suggests that levofloxacin sample antibiotics used in Tasikmalaya city health centers have the ability to kill sensitive clinical isolate bacteria slightly better than standard antibiotics.

CONCLUSION

The antibiotic potency of levofloxacin used in Tasikmalaya City Health Center is 102.03%. Results were still within the range required by the USP 97% -120% (USP, 2014). The results of comparative antibiotic activity testing showed that the antibiotics used had slightly better activity than the standard with the value 1: 2.69.

ACKNOWLEDGMENTS

The authors are deeply grateful to the subjects participating in this study. The author would like to thank Tasikmalaya City Health Office. The author also thanked Shinta Nurazizah for its cooperation in this study.

REFERENCES

